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Community detection

e Networks often exhibit community structure (Girvan and Newman, 2002)

e Many methods to detect communities (Abbe, 2017, Fortunato 2010): modularity
maximization, likelihood-based approaches, convex relaxations, random walks...

This talk: spectral methods

Fig. 1: Community structure of a social network.
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A in the analysis of network data is the automated
discovery of communities — groups of nodes that are strongly connected or that share
similar orroles. In this C we review progi in the field over the past 20
years.
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Spectral methods for community detection

e Cluster embeddings obtained from top leading eigenvectors of appropriate matrix.

e Example: adjacecy spectral embedding (Sussman et al., 2011):
Eigendecomposition: A=VAV' + \A/L/A&L\A/'I
Embedding: X = V|A|'/?
Clustering : kmeans(X, K).

EIG o

e Practically accurate and computationally efficient with well-developed theory.

e Extensions for degree heterogeneity: SCORE (Jin, 2015), spherical clustering
(Lyzinski et al., 2014; Lei and Rinaldo, 2015).



Multilayer networks

Multiple networks over the same set of vertices: multi-view data, time series of
networks, independent samples, etc.




Multilayer networks

Multiple networks over the same set of vertices: multi-view data, time series of
networks, independent samples, etc.
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e Common structure across the networks (communities)

e Local and global variability within and between networks




Example: US time series
August 2019 April 2020

April 2021
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Number of monthly flights between US airports
(data: Bureau of Transportation Statistics)



Model-based community detection

Stochastic block model (SBM) (Holland et al., 1983)

e A is an X n binary symmetric adjacency matrix.
e Nodes are partitioned into X' communities C1,...,Cx

e Edge probabilities only depend on node community labels.

E[A”] = P” = B,s ifi € Cr,j S Cg

= —_ o

_ T
P =7BZ A

o Z c {0,11"*¥ community membership indicator matrix.

e B c [0, 1]%*¥ connection probabilities.



Stochastic block model for multiple networks

Multilayer SBM (Holland et al., 1983)
e [ observed adjacency matrices AW, A,

e Common community structure but different connection probabilities

PO =zBWZT, I=1,...,L.

e Connection probabilities can be different on each network.




Stochastic block model for multiple networks

Multilayer SBM (Holland et al., 1983)
e [ observed adjacency matrices AW, A,

e Common community structure but different connection probabilities

PO =zBWZT, I=1,...,L.

e Connection probabilities can be different on each network.

e Problem: no hub vertices, expected degrees are the same within community.



Degree corrected SBM

Multilayer degre-corrected SBM (Peixoto, 2016; Bazzi et al., 2020):
e Introduce degree-correction parameters (Karrer and Newman, 2011).
PO =e00zBVZ W, I=1,...,L.

oW = diag(ﬁgl), cee 9;“) proportional to node degrees.



Degree corrected SBM

Multilayer degre-corrected SBM (Peixoto, 2016; Bazzi et al., 2020):
e Introduce degree-correction parameters (Karrer and Newman, 2011).
PO =e00zBVZ W, I=1,...,L.
oW = diag(ﬁgl), R 951”) proportional to node degrees.
For network [ and vertices i € C,., j € Cs, the model satisfies

0y _ (1) (1) )
IOg(Pij ) = log(0;") + 10g(9_y‘ )+ log(B;y¢)

vertex effects community effect

e Remark: degrees and connection probabilities can vary across networks.



Degree corrected SBM

Multilayer degre-corrected SBM (Peixoto, 2016; Bazzi et al., 2020):
e Introduce degree-correction parameters (Karrer and Newman, 2011).
PO =e00zBVZ W, I=1,...,L.
oW = diag(ﬁgl), R 951”) proportional to node degrees.
For network [ and vertices i € C,., j € Cs, the model satisfies

log(P) = 1og(6") + log(6") + log(BY)

vertex effects community effect

e Remark: degrees and connection probabilities can vary across networks.

e The model has O(nL + K?L), needs constraints for identifiability.



Community detection identifiability

Assumption: K is the smallest value that can fit the model.

Theorem (Agterberg, Lubberts, A., 2023+ )

The matrices PV, .. .P") have K identifiable communities if and only if the

matrices BV ... B have K jointly distinguishable rows.

Implication: the vertex latent positions of lie on K jointly distinguishable rays

PO — gOA® )T
X0 = gOA®1/2,

m] T TR]
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Spectral clustering for multilayer networks

Multilayer spectral clustering methods: aggregate layers, then perform spectral
clustering

e Sum of adjacencies (Tang et al., 2009; Bhattacharyya and Chatterjee, 2022):
ASum _ ZA(l)
1

e Sum of (bias-adjusted) squared adjacencies (Lei and Lin, 2022):
ASS _ Z(A(z))z

l

e SVD on concatenated embeddings (Paul and Chen, 2020; A. et al, 2021):

v = eigs(A", K)$vectors
VMASE — svds([v(l), VP K)$u
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Spectral clustering for multilayer networks

Multilayer spectral clustering methods: aggregate layers, then perform spectral
clustering

e Sum of adjacencies (Tang et al., 2009; Bhattacharyya and Chatterjee, 2022):
ASum _ ZA(l)
1

e Sum of (bias-adjusted) squared adjacencies (Lei and Lin, 2022):

ASSS Z(A(z))z

l

e SVD on concatenated embeddings (Paul and Chen, 2020; A. et al, 2021):

v = eigs(A", K)$vectors
VMYASE — gvas((VP, ... . VP K)gu

Problem: different degree parameters in DCSBM not considered in aggregation




Multilayer DCSBM: spectral geometry

Observation 1

The scaled rows of the top leading eigenvectors of each PWY are supported on

at most K different rays

PO — g A0,

X0 = g a0 /2,

WT
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Observation 2

Projecting each ray to the sphere results in memberships for a single network.

X = U[A|Y/2
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Observation 3

The matrix of concatenated row-normalized embeddings has left singular sub-
space that reveals community memberships for all networks.

Y=[YD,... YO =UZVT
U
\ a
S q/
/ ;>
N’
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Degree Corrected Multiple Adjacency Spectral Embedding (DC-MASE)

1. For each graph [ € [L]
e Compute K scaled leading eigenvectors of A().
e Row-normalization.

2. Concatenate embeddings and compute the K left leading singular vectors.

3. Cluster the rows via kmeans.

. '*:r ! &
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Theoretical performance

e Theoretical performance measured using the misclustering error rate:

n

03, 2) = % ST LG # #(0)).

i=1
Z and z are the estimated and true memberships (up to a permutation).

e Assume that the number of communities K is known.
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Assumptions: each network [ = 1,..., L satisfies the following.

e Balanced community sizes:

[C(r)| < [C(s)], ”‘g(cl()r))H = ||9él(>s))||7 Vs,r € [K],l € [L].

Eigenvalues of B are bounded: for all k € [K]

2D < (BY) <, 2D,

min

Signal strength:

et(rllza,x K8 maxHaHlog( Y 1 )
<Ai=— A
(0”’ (Amin) 20O~ L 2 Anin

min

e Degree heterogeneity:
Ountn . [l0g(n)
O

e Minimum degree growth: 6\ |01 > clog(n).

1n1n|
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Theorem (Agterberg, Lubberts, A., 2023+)

Under assumptions, if L. < n®°, then the expected misclustering rate satisfies

E[l(Z,2)] S Isiexp<—CLmin{ 25 =5 A 5 }) +O(n_10).

Q) (%)
i—1 K4errzye K2errmax
———— ——
average worst
layer layer

o Rates depend on average smallest eigenvalue X and

err N Z HG(DHS N errm = max GI(JIZIX .
=g [ ZOI N " oL 0w |20 )1/2

min

e Remarks:

e Error rate improves with L: effective for layer aggregation
e No conditions on average layer: flexible for heterogeneous networks.
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Corollary (Homogeneous Degrees)

Under the conditions of the theorem, if all the networks have the same parameters

and all degrees are proportional to \/p., then

E[{(Z, 2z)] < K exp ( - anpn)\f;in> + O (nilo) .

e For L =1, the misclustering error of SCORE (Jin et al., 2021) is

E[4(z,2)] < Kexp(—cnpw\iﬂn) + o(n_g).
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Simulations

e Comparison with other multilayer community detection methods:

Aggregated sum of adjacency matrices (Han et al., 2015)
Bias-adjusted sum-of-squared (Lei and Lin, 2022)

Multiple adjacency spectral embedding (A. et al, 2021)
Orthogonal linked matrix factorization (Paul and Chen, 2020)
e MCMC via graph-tool (Peixoto, 2014)

e Adjusted rand index (ARI): values close to 1 indicate perfect clustering.
e Different types of heterogeneity across networks:

e Degree corrections: same, different, or alternating degrees.
e Connection probabilities: same or different at random.

20



Simulations

e Columns: same, random, or alternating degrees ©(") across graphs.

e Rows: same or different connectivity B across graphs.
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US airport network

e Monthly data of US commercial flights (January 2016 - September 2021)
e Vertices: 343 airports from 48 states.
e Edges: number of flights between airports.
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Parameter estimation

Given community memberships, parameters are estimated as follows:

e Global probability matrices: compute average connectivity within a block

~ 1

BO — - Y AW,

s C )
CONCEN oo i

e Degree corrections: given degrees d Z AU , estimate

an _ d;"
i =3 Ok
e 2jecr) 4

Values larger than 1 indicate relative importance within the community at
time [.
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Tracking airport-level dynamics

degree corrections

2016
Time

Estimated degree-correction parameters from each community.

25



Tracking airport-level dynamics: community 1
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Estimated degree-correction parameters from community 1.
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Flight data: comparison with other methods

e Comparison with other methods via out-of-sample mean squared error (MSE):
1 S
MSE(K, 1) = —[|A" Py, [

e Paired out-of-sample MSE difference between other methods and DC-MASE:
positive values indicate better community quality for DC-MASE

Method ES Sum of adj vs DC-MASE Bl Bias-adjust. SoS vs DC-MASE Bl MASE vs DC-MASE

~

Paired MSE difference

Number of communities



Discussion

e Multilayer DCSBM: flexible and interpretable model.
e DC-MASE: efficient method for multilayer community detection.

e Multilayer spectral methods in other models? Mixed memberships,

popularity-adjusted, networks with covariates, time series model, etc.
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Thank you!

Questions?

Xjarroyo@tamu.edu

Preprint: J. Agterberg, Z. Lubberts, J. Arroyo, “Joint Spectral Clustering in
Multilayer Degree-Corrected Stochastic Blockmodels”, arXiv 2212.05053.
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