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Community detection

• Networks often exhibit community structure (Girvan and Newman, 2002)

• Many methods to detect communities (Abbe, 2017, Fortunato 2010): modularity

maximization, likelihood-based approaches, convex relaxations, random walks...

This talk: spectral methods
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Spectral methods for community detection

• Cluster embeddings obtained from top leading eigenvectors of appropriate matrix.

• Example: adjacecy spectral embedding (Sussman et al., 2011):

Eigendecomposition: A = V̂Λ̂V̂> + V̂⊥Λ̂⊥V̂>⊥

Embedding: X̂ = V̂|Λ̂|1/2

Clustering : kmeans(X̂,K).

• Practically accurate and computationally efficient with well-developed theory.

• Extensions for degree heterogeneity: SCORE (Jin, 2015), spherical clustering

(Lyzinski et al., 2014; Lei and Rinaldo, 2015).
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Multilayer networks

Multiple networks over the same set of vertices: multi-view data, time series of

networks, independent samples, etc.

• Common structure across the networks (communities)

• Local and global variability within and between networks
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Example: US time series of flights

August 2019

April 2021

April 2020

September 2021

Number of monthly flights between US airports

(data: Bureau of Transportation Statistics)
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Model-based community detection

Stochastic block model (SBM) (Holland et al., 1983)

• A is a n× n binary symmetric adjacency matrix.

• Nodes are partitioned into K communities C1, . . . , CK
• Edge probabilities only depend on node community labels.

E[Aij ] = Pij = Brs if i ∈ Cr, j ∈ Cs.

A

• Z ∈ {0, 1}n×K community membership indicator matrix.

• B ∈ [0, 1]K×K connection probabilities.
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Stochastic block model for multiple networks

Multilayer SBM (Holland et al., 1983)

• L observed adjacency matrices A(1), . . . ,A(L).

• Common community structure but different connection probabilities

P(l) = ZB(l)ZT , l = 1, . . . , L.

• Connection probabilities can be different on each network.

• Problem: no hub vertices, expected degrees are the same within community.
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Degree corrected SBM

Multilayer degre-corrected SBM (Peixoto, 2016; Bazzi et al., 2020):

• Introduce degree-correction parameters (Karrer and Newman, 2011).

P(l) = Θ(l)ZB(l)Z>Θ(l), l = 1, . . . , L.

Θ(l) = diag(θ
(l)
1 , . . . , θ

(l)
n ) proportional to node degrees.

For network l and vertices i ∈ Cr, j ∈ Cs, the model satisfies

log(P
(l)
ij ) = log(θ

(l)
i ) + log(θ

(l)
j )︸ ︷︷ ︸

vertex effects

+ log(B(l)
rs )︸ ︷︷ ︸

community effect

.

• Remark: degrees and connection probabilities can vary across networks.

• The model has O(nL+K2L), needs constraints for identifiability.
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Community detection identifiability

Assumption: K is the smallest value that can fit the model.

Theorem (Agterberg, Lubberts, A., 2023+)

The matrices P(1), . . .P(L) have K identifiable communities if and only if the

matrices B(1), . . . ,B(L) have K jointly distinguishable rows.

Implication: the vertex latent positions of lie on K jointly distinguishable rays

P(l) = U(l)Λ(l)(U(l))>

X(l) = U(l)|Λ(l)|1/2.
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Spectral clustering for multilayer networks

Multilayer spectral clustering methods: aggregate layers, then perform spectral

clustering

• Sum of adjacencies (Tang et al., 2009; Bhattacharyya and Chatterjee, 2022):

ASum =
∑
l

A(l).

• Sum of (bias-adjusted) squared adjacencies (Lei and Lin, 2022):

ASoS =
∑
l

(A(l))2

• SVD on concatenated embeddings (Paul and Chen, 2020; A. et al, 2021):

V̂(l) = eigs(A(l),K)$vectors

V̂MASE = svds([V̂(1), · · · , V̂(L)],K)$u

Problem: different degree parameters in DCSBM not considered in aggregation
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Multilayer DCSBM: spectral geometry

Observation 1

The scaled rows of the top leading eigenvectors of each P(l) are supported on

at most K different rays

P(l) = U(l)Λ(l)(U(l))>, X(l) = U(l)|Λ(l)|1/2.
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Observation 2

Projecting each ray to the sphere results in memberships for a single network.

X = U|Λ|1/2 Yi· =
1

‖Xi·‖
Xi·
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Observation 3

The matrix of concatenated row-normalized embeddings has left singular sub-

space that reveals community memberships for all networks.

Y = [Y(1), · · · ,Y(L)] = UΣV>

U

14



Degree Corrected Multiple Adjacency Spectral Embedding (DC-MASE)

1. For each graph l ∈ [L]

• Compute K scaled leading eigenvectors of A(l).

• Row-normalization.

2. Concatenate embeddings and compute the K left leading singular vectors.

3. Cluster the rows via kmeans.
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Theoretical performance

• Theoretical performance measured using the misclustering error rate:

`(ẑ, z) =
1

n

n∑
i=1

1(ẑ(i) 6= z(i)).

ẑ and z are the estimated and true memberships (up to a permutation).

• Assume that the number of communities K is known.
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Assumptions: each network l = 1, . . . , L satisfies the following.

• Balanced community sizes:

|C(r)| � |C(s)|, ‖θ(l)C(r))‖ � ‖θ
(l)

C(s))‖, ∀s, r ∈ [K], l ∈ [L].

• Eigenvalues of B(l) are bounded: for all k ∈ [K]

λ
(l)
min ≤ |λk(B(l))| ≤ C, λ

(l)
min < 1.

• Signal strength:(
θ
(l)
max

θ
(l)
min

)
K8θmax‖θ‖ log(n)

(λmin)2‖θ(l)‖4
≤ λ̄ :=

1

L

∑
λ
(l)
min.

• Degree heterogeneity:

θ
(l)
min

θ
(l)
max

≥
√

log(n)

n

• Minimum degree growth: θ(l)min‖θ
(l)‖ ≥ c log(n).
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Theorem (Agterberg, Lubberts, A., 2023+)

Under assumptions, if L . n5, then the expected misclustering rate satisfies

E [`(ẑ, z)] .
K

n

n∑
i=1

exp

(
− cLmin

{
λ̄2

K4err
(i)
ave︸ ︷︷ ︸

average
layer

,
λ̄

K2err
(i)
max︸ ︷︷ ︸

worst
layer

})
+O

(
n−10) .

• Rates depend on average smallest eigenvalue λ̄ and

err(i)ave :=
1

L

∑
l

‖θ(l)‖33
θ
(l)
i ‖θ(l)‖4λ

(l)
min

; err(i)max := max
l

θ
(l)
max

θ
(l)
i ‖θ(l)‖2(λ

(l)
min)1/2

.

• Remarks:

• Error rate improves with L: effective for layer aggregation

• No conditions on average layer: flexible for heterogeneous networks.
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Corollary (Homogeneous Degrees)

Under the conditions of the theorem, if all the networks have the same parameters

and all degrees are proportional to
√
ρn, then

E [`(ẑ, z)] . K exp

(
− cLnρnλ3

min

)
+O

(
n−10) .

• For L = 1, the misclustering error of SCORE (Jin et al., 2021) is

E [`(ẑ, z)] . K exp(−cnρnλ2
min) + o(n−3).
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Simulations

• Comparison with other multilayer community detection methods:

• Aggregated sum of adjacency matrices (Han et al., 2015)

• Bias-adjusted sum-of-squared (Lei and Lin, 2022)

• Multiple adjacency spectral embedding (A. et al, 2021)

• Orthogonal linked matrix factorization (Paul and Chen, 2020)

• MCMC via graph-tool (Peixoto, 2014)

• Adjusted rand index (ARI): values close to 1 indicate perfect clustering.

• Different types of heterogeneity across networks:

• Degree corrections: same, different, or alternating degrees.

• Connection probabilities: same or different at random.
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Simulations

• Columns: same, random, or alternating degrees Θ(l) across graphs.

• Rows: same or different connectivity B(l) across graphs.
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US airport network

• Monthly data of US commercial flights (January 2016 - September 2021)

• Vertices: 343 airports from 48 states.

• Edges: number of flights between airports.

Community 1 2 3 4

22



Parameter estimation

Given community memberships, parameters are estimated as follows:

• Global probability matrices: compute average connectivity within a block

B̂(l)
rs =

1

|C(r)| |C(s)|
∑

i∈C(r),j∈C(s)

A
(l)
ij .

• Degree corrections: given degrees d
(l)
i =

∑
j A

(l)
ij , estimate

θ̂
(l)
i =

d
(l)
i

1
|C(r)|

∑
j∈C(r) d

(l)
j

.

Values larger than 1 indicate relative importance within the community at

time l.
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Tracking community-level dynamics

Estimated connectivity matrices B̂(1), . . . , B̂(L).
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Tracking airport-level dynamics

Estimated degree-correction parameters from each community.
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Tracking airport-level dynamics: community 1

Estimated degree-correction parameters from community 1.
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Flight data: comparison with other methods

• Comparison with other methods via out-of-sample mean squared error (MSE):

MSE(K, l) =
1

n2
‖A(l) − P̂

(l)

Ẑ(−l,K)‖
2
F .

• Paired out-of-sample MSE difference between other methods and DC-MASE:

positive values indicate better community quality for DC-MASE

27



Discussion

• Multilayer DCSBM: flexible and interpretable model.

• DC-MASE: efficient method for multilayer community detection.

• Multilayer spectral methods in other models? Mixed memberships,

popularity-adjusted, networks with covariates, time series model, etc.
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Thank you!

Questions?

Bjarroyo@tamu.edu

Preprint: J. Agterberg, Z. Lubberts, J. Arroyo, “Joint Spectral Clustering in

Multilayer Degree-Corrected Stochastic Blockmodels”, arXiv 2212.05053.
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