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While statistical analysis of a single network has received a lot of atten-
tion in recent years, with a focus on social networks, analysis of a sample
of networks presents its own challenges which require a different set of an-
alytic tools. Here we study the problem of classification of networks with
labeled nodes, motivated by applications in neuroimaging. Brain networks
are constructed from imaging data to represent functional connectivity be-
tween regions of the brain, and previous work has shown the potential of
such networks to distinguish between various brain disorders, giving rise to
a network classification problem. Existing approaches tend to either treat all
edge weights as a long vector, ignoring the network structure, or focus on
graph topology as represented by summary measures while ignoring the edge
weights. Our goal is to design a classification method that uses both the indi-
vidual edge information and the network structure of the data in a computa-
tionally efficient way, and that can produce a parsimonious and interpretable
representation of differences in brain connectivity patterns between classes.
We propose a graph classification method that uses edge weights as predic-
tors but incorporates the network nature of the data via penalties that promote
sparsity in the number of nodes, in addition to the usual sparsity penalties that
encourage selection of edges. We implement the method via efficient convex
optimization and provide a detailed analysis of data from two fMRI studies
of schizophrenia.

1. Introduction. Network data analysis has received a lot of attention in
recent literature, especially unsupervised analysis of a single network which is
thought of as generated from an exchangeable random graph model, for exam-
ple Bickel and Chen (2009), Gao et al. (2017), Le, Levina and Vershynin (2017),
Zhang and Zhou (2016) and many others. This setting is applicable to a number of
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real life scenarios, such as social networks, but there are situations where the net-
work nodes are labeled and therefore not exchangeable, and/or more than one net-
work is available for analysis, which have received relatively less attention. Here
we focus on the setting motivated by brain connectomics studies, where a sample
of networks is available from multiple populations of interest (e.g., mentally ill
patients and healthy controls). In this setting, each unit in the population (e.g., a
patient) is represented by their own network, and the nodes (brain regions of inter-
est) are labeled and shared across all networks through a registration process that
maps all individual brains onto a common atlas. There are many classical statisti-
cal inference questions one can ask in this setting, for example, how to compare
different populations (Tang et al. (2017b, 2017a)). The question we focus on in this
paper is a classification problem: given a training sample of networks with labeled
nodes drawn from multiple classes, the goal is to learn the rules for predicting the
class of a given network, and just as importantly, interpret these rules.

Network methods are a popular tool in the neuroscience literature (Bullmore
and Bassett (2011), Bullmore and Sporns (2009)). A brain network represents con-
nectivity between different locations of an individual’s brain. How connectivity is
defined varies with the type of imaging technology used and the conditions un-
der which data were collected. In this paper, we focus on functional connectivity,
which is a measure of statistical association between each pair of locations in the
brain, constructed from functional magnetic resonance imaging (fMRI) data, al-
though the methods we develop are applicable to any sample of weighted networks
with labeled nodes. In fMRI studies, BOLD (blood oxygen-level dependent) sig-
nal, a known correlate of underlying neural activity, is measured at a sequence of
time points at many spatial locations in the brain, known as voxels, resulting in a
4-dimensional data array, with three spatial dimensions and a time index. Brain
networks constructed from fMRI data have been successfully used for various
tasks, such as differentiating between certain illnesses, or between types of ex-
ternal stimuli (Bullmore and Sporns (2009)), and contain enough information to
identify individual subjects (Finn et al. (2015)). Extensive statistical literature has
focused on the analysis of raw fMRI data (Lindquist (2008), Zhang et al. (2016),
Zhou, Li and Zhu (2013)), usually aiming to characterize brain activation patterns
obtained from task-based fMRI experiments. In this paper, we focus on resting-
state fMRI data, where no particular task is performed and subjects are free to
think about anything they want. Thus registering the time dimension across differ-
ent subjects is not possible. The connectivity network approach, which averages
over the time dimension in computing a measure of dependence between different
voxels, is thus a natural choice, and has been widely used with multiple types of
neuroimaging data.

Two different datasets are analyzed in this paper, both of resting state fMRI
studies on schizophrenic patients and healthy controls. One dataset, COBRE (54
schizophrenics and 70 controls), is publicly available (Aine et al. (2017)); another,
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FIG. 1. Regions of interest (ROIs) defined by Power et al. (2011), colored by brain systems, and
the total number of nodes in each system.

which we will refer to as UMich data (39 schizophrenics and 40 controls), was col-
lected internally in the last author’s lab. Having two datasets on the same disease
allows us to cross-check models trained on one of them for classification on the
other to check the robustness of our approach. The raw data arrays undergo pre-
processing and registration steps, discussed in detail in the Supplementary Material
(Arroyo Relión et al. (2019)), along with additional details on data collection. To
construct a brain network from fMRI measurements, a set of nodes is chosen, typ-
ically corresponding to regions of interests (ROIs) from some predefined parcella-
tion. In our analysis we use the parcellation of Power et al. (2011) (see Figure 1),
which consists of 264 ROIs divided into 14 functional brain systems (in the CO-
BRE data, node 75 is missing). A connectivity measure is then computed for every
pair of nodes, resulting in an adjacency matrix of size 264 × 264. Many choices of
connectivity measures are available (Smith et al. (2013)); perhaps the most com-
monly used one is the Pearson correlation coefficient between locations, computed
by averaging over the time dimension. It has been argued that partial correlations
are a better measure of connectivity (Varoquaux and Craddock (2013), Narayan,
Allen and Tomson (2015)), but the choice depends on the final goal of analysis.
In this paper we follow the vast majority of the connectomics literature and mea-
sure connectivity on each individual by using marginal correlations between the
corresponding time series (see Figure 2). The correlations are then further rank-
transformed and standardized; see supplement (Arroyo Relión et al. (2019)) for
details. These transformations are intended to deal with subject-to-subject vari-
ability and the global signal regression issue (Gotts et al. (2013)), and although
they lose some information, we observed that on our datasets classification based
on standardized ranks of marginal correlations outperformed classification based
on other connectivity measures, such as marginal correlations. The methods we
develop here are applicable to networks that encode any type of connectivity mea-
sure.
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FIG. 2. Brain network from one of the subjects, showing the value of the Fisher z-transformed
correlations between the nodes, with the 264 nodes grouped into 14 brain systems.

The problem of graph classification has been studied previously in other con-
texts, with a substantial literature motivated by the problem of classification of
chemical compounds (Srinivasan et al. (1996), Helma et al. (2001)), where graphs
represent the compound’s molecular structure. This setting is very different, with
small networks of about 20 nodes on average, binary or categorical edges recorded
with no noise, and different nodes corresponding to different networks (Ketkar,
Holder and Cook (2009)). Classification methods for chemical compounds are
usually based on finding certain discriminative patterns in the graphs, like sub-
graphs or paths (Inokuchi, Washio and Motoda (2000), Gonzalez, Holder and Cook
(2000)), and using them as features for training a standard classification method
(Deshpande et al. (2005), Fei and Huan (2010), Kudo, Maeda and Matsumoto
(2004)). Computationally, finding these patterns is only possible on small binary
networks.

Another type of methods are based on graph kernels (Gärtner, Flach and Wrobel
(2003), Vishwanathan et al. (2010)), which define a similarity measure between
two networks. These kernels combined with support vector machines (SVMs)
have been successfully used on small networks (Borgwardt et al. (2005), Kashima,
Tsuda and Inokuchi (2003)), but the curse of dimensionality makes local kernel
methods unsuitable for large scale networks (Bengio and Monperrus (2005)). On
our datasets, graph kernel methods did not perform better than random guessing.
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In the context of classifying large-scale brain networks, two main approaches
have been followed. One approach is to reduce the network to its global summary
measures such as the average degree, clustering coefficient, or average path length
(Bullmore and Sporns (2009)), and use those measures as features for training
a classification method. Previous studies have reported significant differences on
some of these network measures for groups of patients with certain brain diseases
compared with healthy controls (Supekar et al. (2008), Liu et al. (2008)), suggest-
ing their usefulness as diagnostic biomarkers. However, global summary statistics
collapse all local network information, which can harm the accuracy of classifica-
tion and does not allow to identify local differences. In our data analysis, a method
based on the network measures suggested in Prasad et al. (2015) performed poorly
for classification (see Section 6).

An alternative approach to classification of large networks is to treat edge
weights as a “bag of features,” vectorizing the unique elements of the adjacency
matrix and ignoring the network nature of the data. This approach can leverage
many existing classification methods for vectors, and provides an interpretation at
the edge level if variable selection is applied (Craddock et al. (2009), Richiardi
et al. (2011), Zhang et al. (2012)). Spatial correlation between edges connecting
neighboring nodes can be incorporated (Scott et al. (2015), Watanabe et al. (2014)),
although the effectiveness of this regularization will depend on the parcellation
used to define nodes. Alternatively, an individual test can be used for each edge to
find significant differences between two populations, with a multiple testing cor-
rection and without constructing a classifier at all (Narayan, Allen and Tomson
(2015)). While these methods can deliver good predictions, their interpretability
is limited to individual edge selection, which is less scientifically interesting than
identifying differentiating nodes or regions, and they cannot account for network
structure.

Taking the network structure into account can have benefits for both testing
and classification settings. Some methods perform inference over groups of edges
based on the community assignments of the nodes to which they are incident. For
example, Sripada et al. (2014a, 2014b) introduced Network Contingency Analysis
which begins with massive univariate testing at each edge, and then counts the
number of superthreshold connections in each cell, a group of edges that connect
nodes in two functional systems. Nonparametric methods are then used to conduct
inference on the count statistic for each cell, with multiple comparison correction
for inference at the cell level. Power can be improved by applying a network-based
multiple testing dependence correction (Zalesky, Fornito and Bullmore (2010)).
For classification, better interpretability and potentially accuracy can be obtained
if we focus on understanding which brain regions or interactions between them
are responsible for the differences. In somewhat related work, Vogelstein et al.
(2013) proposed to look for a minimal set of nodes which best explains the differ-
ence, though that requires solving a combinatorial problem. Hypothesis testing on
a type of graph average has also been proposed (Ginestet et al. (2017)). Bayesian
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nonparametrics approaches for modeling populations of networks allow to test for
local edge differences between the groups (Durante and Dunson (2018)), but are
computationally feasible only for small networks.

Our goal in this paper is to develop a high-dimensional network classifier that
uses all the individual edge weights but also respects the network structure of the
data and produces more interpretable results. To achieve this goal, we use struc-
tured sparsity penalties to incorporate the network information by penalizing both
the number of edges and the number of nodes selected. Although our main ap-
plication here is classification of brain connectivity networks, our methods are
applicable to any weighted graphs with labeled nodes, and to general prediction
problems, not just classification.

The rest of this paper is organized as follows. In Section 2, we introduce our
classifier and the structured penalties. In Section 3 we show how to efficiently solve
the resulting convex optimization problem by a proximal algorithm, each step of
which is a further optimization problem which we solve by the alternating direction
method of multipliers (ADMM). The performance of our method is evaluated and
compared with other methods using simulations in Section 5. In Section 6, we
analyze two brain connectivity datasets, each containing schizophrenic patients
and healthy controls, and show that our regularization framework leads to state-of-
the-art accuracy while providing interpretable results, some of which are consistent
with previous findings and some are new. We conclude with a brief discussion in
Section 7.

2. A framework for node selection in graph classification.

2.1. A penalized graph classification approach. We start from setting up no-
tation. All graphs we consider are defined on the same set of N labeled nodes.
A graph can be represented with its adjacency matrix A ∈ R

N×N . We focus on
graphs that are undirected (Aij = Aji) and contain no self-loops (Aii = 0). These
assumptions are not required for the derivations below, but they match the neu-
roimaging setting and simplify notation. Our goal is predicting a class label Y

from the graph adjacency matrix A; in this paper we focus on the binary classifi-
cation problem where Y takes values {−1,1}, although extensions from binary to
multi-class classification or real-valued responses are straightforward. Throughout
this paper, we use ‖ · ‖p to denote the entry-wise �p norm, that is, for a matrix
A ∈ R

m×n, ‖A‖p = (
∑m

i=1
∑n

j=1 |Aij |p)1/p .
A standard general approach is to construct a linear classifier, which predicts the

response Y from a linear combination of the elements of A, 〈A,B〉 = Tr(BT A),
where we arrange the coefficients in a matrix B ∈ R

N×N to emphasize the network
nature of the predictors. We focus on linear classifiers here because variable selec-
tion is at least as important as prediction itself in the neuroimaging application,
and setting coefficients to 0 is a natural way to achieve this. The coefficients are
typically estimated from training data by minimizing an objective consisting of a
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loss function plus a penalty. The penalty can be used to regularize the problem to
make the estimator well defined in high-dimensional problems, to select important
predictors, and to impose structure, and many such penalties have been proposed,
starting from the lasso (Tibshirani (1996)). Our focus is on designing a classifier
in this framework that respects and utilizes the network nature of the predictors.
In brain networks in particular, neuroscientists believe that edges are organized in
subnetworks, also called brain systems (Power et al. (2011)), that carry out spe-
cific functions, and certain subnetworks are important for prediction (Bullmore
and Sporns (2009)), although different studies tend to implicate different regions
(Fornito et al. (2012)). Thus we aim to find nodes or subnetworks with good dis-
criminative power, and hence select both the most informative nodes and edges.

Although the methods we develop here can be used on small networks, our main
focus is on the more challenging case of medium to large brain networks. In brain
connectivity studies dealing with multiple subjects, while raw images may contain
hundreds of thousands of voxels, they are commonly down-sampled according to
a parcellation scheme with a coarser resolution, usually resulting in networks with
hundreds or thousands of nodes representing ROIs (see, e.g., Kiar et al. (2018)).
This coarser resolution is essential for registration, as aligning different brains at
a high resolution is much harder, but it still results in hundreds of thousands or
millions of edges which serve as predictor variables. Given the typical data sizes in
this area of application, we focus on methods based on convex formulations, which
allow for efficient and scalable implementations with convergence guarantees.

Let {(A(1), Y1), . . . , (A
(n), Yn)} be the training sample of undirected adjacency

matrices with their class labels, and let Y = (Y1, . . . , Yn). A generic linear classifier
described above is computed by finding the coefficients B defined by

(2.1) B̂ = arg min
B∈B

{
�(B) + �(B)

}
,

where B = {B ∈R
N×N : B = BT ,diag(B) = 0}, � is a penalty, and

�(B) = 1

n

n∑
k=1

�̃
(
Yk,A

(k);B)

is a loss function evaluated on the training data. Our methodology can accommo-
date different choices of loss functions that can extend beyond classification prob-
lems (e.g., least squares or generalized linear models). The optimization algorithm
presented in Section 3 can work with any convex and continuously differentiable
loss function, and further assumptions are required for consistency (see Section 4).
In this paper, for the purpose of classification we use the logistic loss function in
the simulations and data analysis, which is defined as

�̃
(
Yk,A

(k);B,b
) = log

{
1 + exp

(−Yk

〈
A(k),B

〉 + b
)}

.

The threshold b is an additional parameter to be estimated.



NETWORK CLASSIFICATION 1655

To capture structural assumptions on important predictive edges, we focus on
convex structured sparsity penalties (Bach et al. (2012)) that encourage a small
number of active nodes, by which we mean nodes attached to at least one edge with
a nonzero coefficient. One approach to finding a set of such nodes was proposed
by Vogelstein et al. (2013), who called it a signal-subgraph, and proposed finding
the minimal set of nodes (called signal vertices) which together are incident to all
selected edges (but not every node connected to a selected edge is a signal vertex).
Finding this set is a combinatorial optimization problem, and the set is not always
uniquely defined. Instead, we focus on convex formulations that allow for efficient
computation and encourage small active node sets indirectly.

Other convex penalties have been used for fMRI data as a way to enforce spa-
tial smoothness in the solution (Grosenick et al. (2013), Hu and Allen (2015), Xin
et al. (2014)). These methods assume that voxels are equally spaced in the brain,
and neighboring voxels are highly correlated. In particular, Watanabe et al. (2014)
proposed penalties for brain network classification using these spatial assumptions.
Here, instead of enforcing a spatial regularization directly, we aim for a regular-
ization that can be applied to any type of network data, and in particular to brain
networks with coarse and/or uneven parcellations where enforcing spatial smooth-
ness may not work as well. In any case, the flexibility of convex optimization
algorithms allows one to easily incorporate additional spatially-informed penalties
if needed.

2.2. Selecting nodes and edges through group lasso. To reflect the network
structure of the predictors, we use a penalty that promotes a sparse classifier not
only in the number of edges used, but also in the number of nodes. The group
lasso penalty (Yuan and Lin (2006)) is designed to eliminate a group of variables
simultaneously. Here we penalize the number of active nodes by treating all edges
connected to one node as a group. Then eliminating this group (a row of coeffi-
cients in the matrix B) is equivalent to de-activating a node. The group penalty is
defined as

(2.2) �λ,ρ(B) = λ

(
N∑

i=1

‖B(i)‖2 + ρ‖B‖1

)
,

where B(i) denotes the vector of edge weights incident to the ith node (or equiva-
lently, the ith row or column of B), and λ,ρ ≥ 0 are tuning parameters. Note that
the constraint B = BT makes the groups overlap, since a coefficient Bij belongs
to groups associated with the nodes i and j , and therefore, the edge between nodes
i and j would be selected only if both nodes are activated. The second term in the
penalty ρ‖B‖1 acts as the usual lasso penalty to promote sparsity inside the group
(Friedman, Hastie and Tibshirani (2010a)), allowing to select a subset of edges
for an active node. Due to the overlap in the groups, this lasso penalty is usually
necessary in order to produce sparse solution (see Proposition 1). The constraint
diag(B) = 0 in (2.1) is automatically enforced with this formulation.
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REMARK 1. An alternative to the constraint in the problem (2.1) is to optimize
over the set

B̃ = {
B ∈ R

N×N,diag(B) = 0
}
.

Without the symmetry constraint and assuming undirected graphs, the penalty
(2.2) is equivalent to the overlapping group lasso formulation of Jacob, Obozinski
and Vert (2009). This formulation has some advantages. Since it gives group lasso
without overlaps, the lasso penalty ρ‖B‖1 is not required to obtain sparse solu-
tions, and more efficient optimization algorithms exist for this case. This approach
would loosely correspond to the idea of selecting signal nodes as in Vogelstein
et al. (2013), in the sense that an edge can be selected if at least one of its nodes
is selected, and the second node could be inactive. The downside is that each edge
now corresponds to two different coefficients Bij and Bji , the problem encoun-
tered by all variable selection methods that ignore symmetry, such as Meinshausen
and Bühlmann (2006). The standard solution for this problem, as suggested by
Jacob, Obozinski and Vert (2009), is to take the average of the coefficients. Intu-
itively, one would expect that the formulation using B would be better when the
significant edges are incident to a small set of nodes, since both nodes have to be
active for an edge to be selected, while using B̃ may be better when for some nodes
most of their edges are significant, creating “significant hubs.” Since in our appli-
cation we are primarily looking for discriminative brain subnetworks, we focus on
the symmetrically constrained formulation for the rest of the paper. We also found
that in practice this second formulation results in less accurate classifiers for the
neuroimaging data discussed in Section 6.

REMARK 2. The analogue to (2.2) for directed graphs would assign coeffi-
cients Bij and Bij to the same group, resulting in the penalty

(2.3) �λ,ρ(B) = λ

(
N∑

i=1

√∑
j

(
B2

ij + B2
ji

) + ρ‖B‖1

)
,

where B ∈ B̃. Alternatively, we can also use the formulation of Remark 1, by
replicating the variables and estimating two matrices of coefficients, say B(1) and
B(2), with the penalty

�̃λ,ρ

(
B(1),B(2)) = λ

[
N∑

i=1

√∑
j

{(
B

(1)
ij

)2 + (
B

(2)
j i

)2} + ρ
(∥∥B(1)

∥∥
1 + ∥∥B(2)

∥∥
1

)]
,

with B(1),B(2) ∈ B̃, and set the coefficients matrix to B = (B(1) + B(2))/2. This
formulation will again not directly select subnetworks as discussed in Remark 1.

Finally, for numerical stability we add an extra ridge penalty term γ
2 ‖B‖2

F =
γ
2 Tr(BT B), with γ a small and fixed constant. There are several benefits
of combining ridge and lasso penalties (see, e.g., Zou and Hastie (2005)).
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The parameter γ can be potentially considered as an additional tuning parame-
ter, but here we only use a small fixed constant γ in order to avoid numerically
degenerate solutions. In practice, the results are not sensitive to the exact value
of γ .

Putting everything together, to fit our graph classifier, we solve the problem

(2.4)

(B̂, b̂) = arg min
B∈B,b∈R

{
1

n

n∑
k=1

log
(
1 + exp

(−Yk

〈
B,A(k)〉 + b

)) + γ

2
‖B‖2

F

+ λ

(
N∑

i=1

‖Bi‖2 + ρ‖B‖1

)}

for given values of λ and ρ, which will be chosen by cross-validation.

3. The optimization algorithm. Our optimization algorithm to solve the
problem (2.4) combines two common approaches to convex optimization: prox-
imal algorithms and alternating direction method of multipliers (ADMM). We use
an accelerated version of the proximal algorithm (Beck and Teboulle (2009)) to
solve the main problem (2.4). In each step, we need to calculate a proximal op-
erator, which is a further convex optimization problem solved with the ADMM
algorithm.

The main optimization difficulty comes from the overlapping groups. Some al-
gorithms have been proposed for this case, including a subgradient descent method
(Duchi and Singer (2009)), which has a slow rate of convergence, or proximal al-
gorithms based on smoothing the original problem (Chen et al. (2012), Yuan, Liu
and Ye (2011)). Although smoothing yields fast algorithms, it is not clear that the
sparsity pattern is preserved with those approximations. We follow an approach
similar to Yuan, Liu and Ye (2011) and Chen et al. (2012), but solve the prox-
imal operator for the penalty (2.2) directly using the ADMM method. This can
potentially give a more accurate sparsity pattern, and the flexibility of the algo-
rithm allows for additional penalties if desired, such as spatial smoothing similar
to Watanabe et al. (2014) (see Remark 3).

The main problem (2.1) is solved with a proximal algorithm (see Parikh and
Boyd (2013)). Recall that the proximal operator for a function f is defined as
proxf (v) = arg minx{f (x) + 1

2‖x − v‖2
2}. Starting with an initial value B(0) ∈

R
N×N , a proximal algorithm solves the optimization problem (2.1) by iteratively

calculating the proximal operator of � = �λ,ρ for a descent direction of the dif-
ferentiable loss function �. We use an accelerated version of the algorithm (Beck
and Teboulle (2009)), which for each k = 2, . . ., until convergence, performs the
updates

W(k) = B(k−1) + k − 1

k + 2

(
B(k−1) − B(k−2)),(3.1)
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B(k) = prox
t (k)�

{
W(k) − t (k)∇�

(
W(k))}

= arg min
B∈B

{
1

2

∥∥B − (
W(k) − t (k)∇�

(
W(k)))∥∥2

2 + t (k)�(B)

}
,

(3.2)

where ∇�(W) ∈ R
N×N is the gradient of the loss function � at W and {t (k)} is

a sequence of positive values. If ∇� is Lipschitz continuous, with L its Lipschitz
constant, the sequence of values �(B(k))+�(B(k)) converges to the optimal value
at rate O(1/k2) if t (k) ∈ [0,1/L). The value of t (k) can be chosen using a back-
tracking search (Beck and Teboulle (2009)), which decreases this value until the
condition

(3.3) �
(
B(k)) ≤ �

(
W(k)) + 〈∇�

(
W(k)),B(k) − W(k)〉 + 1

2t (k)

∥∥B(k) − W(k)
∥∥2

2

is satisfied. This procedure ensures that step sizes {t (k)} become smaller as the
algorithm progresses, until t (k) < 1/L. In practice, L might be large, which can
make the algorithm slow to converge. It has been observed in other sparse high-
dimensional problems that search strategies for t (k) which allow for t (k) > 1/L

when appropriate can actually speed up convergence (Scheinberg, Goldfarb and
Bai (2014), Hastie, Tibshirani and Wainwright (2015)). We use a strategy of this
type, allowing t (k) to increase by a factor of α ≥ 1 if the relative improvement in
the loss function on iteration k becomes small. We observed that this strategy sig-
nificantly reduces the number of iterations until convergence. The entire procedure
is summarized in Algorithm 1 of the Supplementary Material (Arroyo Relión et al.
(2019)).

The logistic loss function of (2.4) has an extra parameter b. Rather than includ-
ing it as an unpenalized coefficient for a constant covariate, we use block coordi-
nate descent and solve for b separately. This is convenient because the threshold
b and the matrix of coefficients B may not be on the same scale. Thus, b can be
updated by solving b(k+1) = arg minb∈R �(B(k), b), which is easy to compute via
Newton’s method.

The proximal algorithm requires solving the proximal operator (3.2), which has
no closed form solution for the penalty (2.2) under the symmetry constraint. Strate-
gies based on smoothing this penalty have been proposed (Chen et al. (2012),
Yuan, Liu and Ye (2011)). However, to allow for variable selection which results
from nondifferentiability of the penalty, we aim to solve the proximal operator
directly using ADMM (see Boyd et al. (2011) for a review). Note that if the sym-
metric constraint is relaxed as in Remark 1, the proximal operator has a closed
form solution (see Remark 4).

The ADMM works by introducing additional constraints and performing coor-
dinate descent in the corresponding augmented Lagrangian function. Setting Z =
W(k) − t (k)∇�(W(k)) and t = t (k), and introducing the variables Q,R ∈ R

N×N ,
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we can formulate (3.2) as a convex optimization problem

(3.4)
min

B̃,Q,R

1

2
‖B̃ − Z‖2

2 + tλ

(
N∑

i=1

‖Q(i)‖2 + ρ‖R‖1

)

subject to B̃ = Q, B̃ = R, B̃ = B̃T , diag(B̃) = 0.

The ADMM algorithm introduces the multipliers U,V ∈ R
N×N and a penalty

parameter μ > 0 to perform gradient descent on the Lagrangian of (3.4), given by
Lμ = Lμ(B̃,Q,R,U,V ) as

(3.5)
Lμ = 1

2
‖B̃ − Z‖2

2 + tλ

(
N∑

i=1

‖Q(i)‖2 + ρ‖R‖1

)
+ 〈U, B̃ − Q〉

+ 〈V, B̃ − R〉μ
2

(‖B̃ − Q‖2
2 + ‖B̃ − R‖2

2 + ∥∥B̃ − B̃T
∥∥2

2

)
.

The value μ controls the gap between dual and primal feasibility. In practice, we
observed that setting μ = 0.1 gives a good balance between primal and dual feasi-
bility, although other self-tuning methods are available (Parikh and Boyd (2013)).
This function is optimized by coordinate descent, with each variable updated to
minimize the value of Lμ while all the other variables are fixed. This update has
a closed form; the detailed steps of the ADMM are shown in Algorithm 2 of the
Supplementary Material (Arroyo Relión et al. (2019)). These steps are performed
until the algorithm converges within tolerance εADMM > 0. Note that ADMM will
be performed in each iteration of the algorithm to solve (2.4) and thus tolerance
εADMM can be decreased as the algorithm progresses. On the other hand, perform-
ing only one iteration of the algorithm gives a similar algorithm to the one of Chen
et al. (2012).

REMARK 3. The ADMM makes it very easy to incorporate additional penal-
ties. If � is a new penalty, we can rewrite (3.4) by introducing an additional pa-
rameter Q̃ so it becomes

min
B̃,Q,Q̃,R

1

2

∥∥B̃ − Z(k)
∥∥2

2 + tλ

(
N∑

i=1

‖Q(i)‖2 + ρ‖R‖1

)
+ t�(Q̃)

subject to B̃ = Q, B̃ = Q̃, B̃ = R, B̃ = B̃T , diag(B̃) = 0.

We can obtain the Lagrangian formulation (3.5) in a similar manner, and include
new parameters in the ADMM updates, which can be performed efficiently as long
as the proximal operator of � has a closed form solution. This is in fact the case
for some other penalties of interest, such as the GraphNet penalty (Grosenick et al.
(2013), Watanabe et al. (2014)), which can incorporate spatial location informa-
tion.
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REMARK 4. The alternative formulation for the graph penalty given in Re-
mark 1 corresponds to standard sparse group lasso (Friedman, Hastie and Tibshi-
rani (2010a)). In particular, we can still employ the proximal algorithms (3.1) and
(3.2), but instead optimize over the set B̃. Without the symmetric constraint on
B , the overlap in the group lasso penalty disappears, and this vastly simplifies the
problem. Using Theorem 1 of Yuan, Liu and Ye (2011), the update for B(k) has a
closed form solution given by

Y (k) = B(k−1) + k − 2

k

(
B(k−1) − B(k−2)),(3.6)

Z
(k)
ij =

(
1 − λρ

‖Y (k)
ij − tk∇ij �(Y (k))‖2

)
+

(
Y

(k)
ij − tk∇ij �

(
Y (k))),(3.7)

B
(k)
(i) =

(
1 − λ

‖Z(k)
(i) ‖2

)
+

(
Z

(k)
(i)

)
, i ∈ [N ].(3.8)

4. Theory. In this section, we show that the solution of the penalized prob-
lem (2.2) can recover the correct subgraph corresponding to the set of nonzero
coefficients, and give its rates of convergence. The theory is a consequence of the
results of Lee, Sun and Taylor (2015) for establishing model selection consistency
of regularized M-estimators under geometric decomposability (see Supplemen-
tary Material (Arroyo Relión et al. (2019))). We present explicit conditions for
our penalty to work well, which depend on the data as well as the tuning parame-
ters.

Let B
 ⊂ R
N×N be the unknown parameter we seek to estimate, and we assume

there is a set of active nodes G ⊂ [N ] with |G| = G, so that B

ij = 0 if i ∈ GC or

j ∈ GC . We allow some edge weights inside the subgraph defined by G to be zero,
but we focus on whether the set G is correctly estimated by the set Ĝ of active
nodes in B̂ . Denote by M ⊆ R

N×N the set of matrices where the only nonzero
coefficients appear in the active subgraph, that is,

(4.1) M = {
B ∈ R

N×N |Bij = 0 for all i ∈ GC or j ∈ GC,B = BT }
.

There are two main assumptions on the loss function � required for consistent
selection in high-dimensional models (Lee, Sun and Taylor (2015)). The first as-
sumption is on the convexity of the loss function around B
, while the second
assumption bounds the size of the entries in the loss Hessian between the variables
in the active subgraph and the rest. Let the loss Hessian ∇2�(B
) ∈ R

N×N ⊗R
N×N

be defined by

∇2
(i,j),(k,l)�(B) = ∂2�(B)

∂Bij ∂Bkl

,
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and define the matrix H(i,j),G ∈ R
G×G with (i, j) ∈ (G × G)C such that

(4.2) (H(i,j),G)k,l = Tr
{(∇2

(i,j),(G,G)�
(
B
))�(k,l),(·,·)

}
, 1 ≤ k, l ≤ G,

where � ∈ R
G×G ⊗ R

G×G is a tensor such that Mat(�) is a pseudoinverse of
Mat(∇2

(G,G),(G,G)�(B

)), and Mat is the operation that unfolds the entries of a ten-

sor � into a G2 × G2 matrix. The matrix H(i,j),G measures how well the variable
corresponding to the edge (i, j) can be represented by the variables in the active
subgraph.

ASSUMPTION 1 (Restricted Strong Convexity). There exists a set C ⊂ R
N×N

with B
 ∈ C, and constants m > 0, L̃ < ∞ such that∑
i,j

i,j Tr
{(∇2

(i,j),(·,·)�(B)
)


} ≥ m‖‖2
2 ∀B ∈ C ∩M, ∈ C ∩M,

∥∥∇2�(B) − ∇2�
(
B
)∥∥

2 ≤ L̃
∥∥B − B


∥∥
2 ∀B ∈ C.

ASSUMPTION 2 (Irrepresentability). There exists a constant 0 < τ < 1 such
that

max
i∈GC

∥∥∥∥∥
(

G∑
k=1

∥∥(H(i,j),G)k·
∥∥

2

)N

j=1

∥∥∥∥∥
2

= 1 − τ < 0.

This version of the irrepresentability condition corresponds to the one usually
employed in group lasso penalties (Bach (2008)), but as we will see later, due to
overlaps in the groups it further requires a lower bound on ρ to work for model
selection.

The first two assumptions are stated directly as a function of the loss for a fixed
design case, but they can be substituted with bounds in probability for the case
of random designs. In order to obtain rates of convergence, we do require a dis-
tributional assumption on the first derivative of the loss. This assumption can be
substituted with a bound on maxi ‖∇�(B
)(i)‖2.

ASSUMPTION 3 (Sub-Gaussian score function). Each pair in the sample
(A,Y ) is independent and comes from a distribution such that the entries of the
matrix ∇�̃(Y,A;B
) are subgaussian. That is, for all t > 0 there is a constant
σ 2 > 0 such that

max
i,j

P
(∥∥∇ij �̃

(
Y,A;B
)∥∥∞ > t

) ≤ 2 exp
(−t2/σ 2)

.

With these assumptions, we establish consistency and correct model selection.
The proof is given in the Supplementary Material (Arroyo Relión et al. (2019)).
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PROPOSITION 1. Suppose Assumptions 1 and 3 hold.

(a) Setting the penalty parameters as λ = c1σ

√
logN

n
min{

√
N

1+ρ
, 1

ρ
} and ρ ≥ 0

for some constant c1 > 0, with probability at least 1 − 2/N the optimal solution of
(2.4) is unique and satisfies

(4.3)
∥∥B̂ − B


∥∥
2 = OP

(
σN

√
logN

n

)
.

(b) Suppose Assumption 2 also holds. If n > c2G
2σ 2 logN for a constant c2 >

0, setting the penalty parameters as λ = c3σ

√
logN

n
min{

√
N

1+ρ
, 1

ρ
} for some constant

c3 > 0, and

(4.4) ρ >
1

τ
− 1√

G
,

then

∥∥B̂ − B

∥∥

2 = OP

(
σG

√
logN

n

)
,(4.5)

P(Ĝ ⊆ G) = 1 − 2/N.(4.6)

The part of the penalty associated with ρ causes the solution to be sparse. Due
to the overlap in the groups, a small value of ρ will usually not result in zeros in
the solution of the problem (2.4). The lower bound on ρ in (4.4) ensures that the
irrepresentability condition of Lee, Sun and Taylor (2015) holds (see Lemma 2 in
the supplement (Arroyo Relión et al. (2019))).

Proposition 1 ensures that, with high probability, all edges estimated to have
nonzero weights are contained in the active subgraph, and quantifies the error in
estimating the entries of B∗. To ensure that all active nodes are recovered, at least
one edge corresponding to each active node needs to have a nonzero weight. A sim-
ilar result can be obtained to guarantee recovery of all active nodes under a stronger
assumption that the magnitude of the nonzero entries of B
 is bounded below by
|B


ij | > c4G
2λ for a constant c4. The condition in part (b) requires a sample size

that grows faster than the size of the active subgraph, which in practice can be
much smaller than the size of the network, making the method suitable for our
applications in which the sample size is limited and the number of nodes is large.

5. Numerical results on simulated networks. In this section, we evaluate the
performance of our method using synthetic networks. We are interested in assess-
ing the ability of the method to correctly identify predictive edges, its classifica-
tion accuracy, and comparisons to benchmarks. We compare the different methods’
edge selection performance in simulations using area under the curve (AUC). Brain
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connectomic networks are characterized by organization of nodes into communi-
ties (Bullmore and Sporns (2009)), in which nodes within the same community
tend to have stronger connections than nodes belonging to different communities.
In order to generate synthetic networks that mimic this property, we introduce
community structure using the stochastic block model (SBM) (Holland, Laskey
and Leinhardt (1983)). Before generating edges, we assign each node a commu-
nity label, Ci , where Ci ∈ [K] for each i ∈ [N ]. The node assignments are the same
for all networks in the population. Given the community labels, network edges are
generated independently from a distribution that only depends on the community
labels of the nodes associated with each edge. Since fMRI networks are real-valued
networks, we generate edge weights from a Gaussian distribution, rather than the
standard Bernoulli distribution normally used with the SBM. Specifically, we draw
each Aij independently from N(μCiCj

, σ 2), with μ ∈ R
K×K defined by

μkl =
{

0.3 if k = l,

0.1 if k �= l,

and σ 2 = 0.18. These values were chosen to approximately match the distribu-
tion of edge weights in our datasets (see Section 6). We set the number of nodes
N = 300, with K = 12 communities of size 25 each. We work with undirected
networks, so the adjacency matrices are symmetric, with 44,850 distinct edges.
Although our method is able to scale to larger networks, this moderately sized
setting is already highly computationally demanding for many of the comparison
benchmarks.

To set up two different class distributions, we select a set of active nodes G
first, defined by the nodes corresponding to some communities selected at ran-
dom. Then, we alter a set of differentiating edges E selected at random from G×G
with probability p. For each edge (i, j) ∈ E , the distribution in class Y = −1 is
N(μCiCj

, σ 2), while the distribution in class Y = 1 is changed to N(0.2, σ 2). Fig-
ure 3 shows example expected adjacency matrices for each class. We then gener-
ate 50 networks from each class, resulting in a sample size of n = 100. We vary
G = |G| by changing the number of communities selected, and the value of p,
to study the effect of the number of active nodes and the density of differenti-
ating edges inside a subgraph. The number of communities selected is set to 1
(|G| = 25), 2 (|G| = 50) and all communities (|G| = 300); note that in the last
scenario all nodes are active and hence the node structure is not informative at all.

Since we are interested in identifying predictive edges and nodes, we use the
AUC of the receiver operating characteristic (ROC) curve, for both edge and node
selection. For each method, we calculate the ROC curve by changing its corre-
sponding sparsity parameter to vary the number of edges selected. For a selection
method M and a sparsity parameter η let Ê(M, η) be the set of edges selected by
M, and Ĝ(M, η) the set of active nodes corresponding to Ê(M, η). We calculate
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FIG. 3. Expected adjacency matrices for each class. There are 50 active nodes G on communities
4 and 7, and edge weights on 25% of the edges within G × G have been altered for the second class
of networks (Y = 1).

the edge false positive rate (EFPR) and edge true positive rate (ETPR) as

EFPR(M, η) = |Ê(M, η) ∩ EC |
|EC | , ETPR(M, η) = |Ê(M, η) ∩ E |

|E | .

The node FPR and TPR are calculated similarly.
We also evaluate the prediction accuracy of the methods. For each method, we

use 5-fold cross-validation to select the best tuning parameter using the training
data, and then compute the test error on a different dataset simulated under the
same settings. The AUC and test errors reported are averaged over 30 replications.

Methods for benchmark comparisons on simulated networks were selected
based on their good performance on real data (see Section 6). For our method
(GC), we vary the parameter ρ and compare results for two different values of λ,
0.05 (GC1) and 10−4 (GC2). For unstructured regularized logistic regression, we
use the elastic net (Friedman, Hastie and Tibshirani (2010b)), with a fixed α = 0.02
(ENet). The performance of elastic net is not very sensitive to different values of
α, but the number of variables that the method is able to select with large values is
limited (including the case of α = 1 that corresponds to the lasso). A support vector
machine with �1 penalty (Becker et al. (2009), Zhu et al. (2004)) is also included
(SVML1) for comparison, and additionally we evaluate the classification error of
the original support vector machines (SVM) (Cortes and Vapnik (1995)). For both
SVMs, we use linear kernels, which performed better than nonlinear ones. We
also consider an independent screening method for variable selection based on the
two sample t-statistic (T-stat). Finally, we also compare with the signal-subgraph
method (SS) (Vogelstein et al. (2013)) which is the only other method that takes
into account the network structure of the predictor variables. Note that the signal
subgraph is designed for binary networks, so in order to apply it we thresholded
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FIG. 4. Variable selection performance of different methods in terms of edge AUC (top) and node
AUC (bottom) as a function of the fraction of differentiating edges in the subgraph induced by the
active node set G. As the proportion of active edges increases, methods that use network structure
improve their performance when only a subset of the nodes is active.

each edge at the population mean. For each method, we fit 10 different tuning
parameters to change the sparsity of the solution.

Figure 4 shows the values of the average AUC for selecting edges (top) and
nodes (bottom). For G = 25 and 50, as the proportion of differentiating edges in
the active subgraph increases, methods that take into account network structure
(GC1, GC2 and SS) slightly improve their edge AUC, since enforcing node selec-
tion also results in better edge selection, while the edge AUC remains constant for
unstructured methods (ENet, T-stat and SVML1). On node selection, all methods
improve the node AUC as the fraction of significant edges increases, but GC and
SS have the largest gains. A similar trend is observed in classification error shown
in Figure 5. All methods improve as the proportion of differentiating edges in-
creases, but our method has the best performance overall. Our method performed
the best with the larger value of λ (GC1) on variable selection, particularly when
the set of active nodes is smaller, but both values of λ give very good classification
performance. In the last scenario (G = 300), all nodes are active so the node AUC
is undefined, and the node structure is not informative at all. Although the perfor-
mance of our method is no longer the best, it performs comparably to state of the
art methods that do not use network structure.

In terms of computing time, since there are many contributing factors including
the software choice for implementation and the tuning parameters, a fair compar-
ison is difficult. We can roughly say that elastic net is the fastest, taking about a
minute to run a cross-validation instance, while our method takes about 10 minutes
on average, and the signal-subgraph takes more than an hour.
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FIG. 5. Classification error of different methods as a function of the fraction of differentiating edges
in the subgraph induced by the active node set G. Our method is more accurate when only a subset
of the nodes is active.

6. Application to schizophrenia data. We analyze the performance of the
classifier on the two different brain fMRI datasets previously described in Sec-
tion 1. The code of our classifier and the processed connectomics datasets are
available in the Supplementary Material (Arroyo Relión et al. (2019)).

6.1. Classification results. First, we evaluate our method’s classification ac-
curacy. We use a nested 10-fold cross-validation to choose tuning parameters and
estimate the test accuracy. The classifier is trained for a range of values of λ and
ρ, with λ ∈ {10−7,10−6.5, . . . ,10−2} and ρ ∈ {10−3,10−2.5, . . . ,102}. The value
of γ in (2.4) is set to 10−5; we observed that setting γ to a small value speeds
up convergence without affecting the accuracy or sparsity of the solution. Figure 6
shows the average cross-validated accuracy, sparsity (fraction of zero coefficients)
and node sparsity (fraction of inactive nodes), as a heat map over the grid of tun-
ing parameter values. We observe that λ has little influence on sparsity, which is
primarily controlled by ρ. Moreover, as Proposition 1 suggests, values of ρ < 1
do not result in node selection. As expected, accuracy generally decreases as the
solution becomes sparser, which is not uncommon in high-dimensional settings
(Hastie, Tibshirani and Wainwright (2015)). However, we can still achieve excel-
lent accuracy with a substantially reduced set of features. In the COBRE dataset,
the best accuracy is obtained with only 1886 edges (5.4%) but almost all nodes
are active (260). On the UMich data, 29,733 edges (85.6%) achieve the best per-
formance, and all nodes are active. Choosing parameters by cross-validation often
tends to include too many noise variables (Meinshausen (2007)), as we also ob-
served in simulations. A commonly used technique to report solutions that still
achieve good accuracy with a substantially reduced set of features is the so-called
“one-standard-error rule” (Hastie, Tibshirani and Wainwright (2015)), in which
one selects the most parsimonious classifier with cross-validation accuracy at most
one standard error away from the best cross-validation accuracy. Figure 7 shows
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FIG. 6. Cross-validated results for the two data sets. Classification accuracy (left), fraction of zero
edge coefficients (middle), and fraction of inactive nodes (right).

the solutions for each dataset obtained by this rule. Nodes are ordered by brain
systems (see Figure 1). The fitted solution for COBRE has 549 nonzero coeffi-
cients (1.56%) and 217 active nodes (82.5%), while the UMich solution has 11,748
nonzero entries (33.8%), and all nodes are active. Note that when many variables

FIG. 7. Fitted coefficients for COBRE and UMich datasets, with tuning parameters selected by the
“one standard error rule.” Positive coefficients corresponds to higher edge weights for schizophrenic
patients.
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TABLE 1
Cross-validated accuracy (average and standard errors over 10

folds) for different methods

Classification accuracy % (s.e.)

Method COBRE UMich

With variable selection
Our method (GC) 92.7 (2.6) 85.9 (3.6)
Elastic net 89.5 (1.8) 82.6 (4.7)
SVM-L1 87.9 (2.2) 86.2 (4.3)
Signal-subgraph 86.1 (3.3) 82.4 (3.3)
DLDA 84.6 (3.3) 73.4 (3.9)
Lasso 80.1 (5.6) 60.9 (5.6)

No variable selection
SVM 93.5 (2.1) 89.8 (2.5)
Ridge penalty 91 (2.6) 80.9 (3.5)
Random forest 74.2 (2.6) 82.1 (3.9)
Network summaries 61.4 (3.1) 65 (7.2)

are selected, the magnitude of the coefficients becomes small due to the grouping
effect of the penalty (Zou and Hastie (2005)).

We also compared our method to benchmarks (Table 1), using the same methods
as in the previous section and training and evaluating all methods using the same
nested 10-fold cross-validation. For SVM, we tested different kernels, including
graph aware kernels (Gärtner, Flach and Wrobel (2003)), but in most cases local
kernel methods were no better than random guessing. We additionally included
random forests and a method based on global and local network summaries pre-
viously proposed as features for classifying brain data (Prasad et al. (2015)). For
the latter, because our dataset is much larger, we only considered global and node
features proposed in Prasad et al. (2015), which resulted in about 30,000 features
per individual, and omitted edge features. Watanabe et al. (2014) evaluated their
classifiers on a different parcellation of the COBRE data, and we do not include
their methods since they are based on the assumption of equally spaced nodes and
cannot be directly applied to our data. Their reported accuracy of 71.9% and 73.5%
for the COBRE data is substantially lower than our method, although the results
are not directly comparable.

Results in Table 1 show that most methods performed better on the COBRE
dataset than on the UMich dataset, which can be partially explained by the differ-
ent sample sizes and possibly noise levels. Besides differences in sample size and
demographic characteristics (see Supplementary Material (Arroyo Relión et al.
(2019))), the COBRE dataset is more homogeneous as it was collected using iden-
tical acquisition parameters, whereas the UMich dataset was pooled across five
different experiments spanning seven years.
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FIG. 8. Cross-validated accuracy and number of nodes selected as a function of the number of
edges used.

Our method performs very well on both datasets, particularly among methods
that do variable selection. SVMs, which use the hinge loss, perform well too, and
generally outperform methods using the logistic loss. Our penalty can be combined
with any loss, so we could also include our penalty combined with hinge loss
which might potentially improve classification accuracy, but we do not pursue this
direction, for two reasons: one, our method is close to SVM + L1 as it is (better
on COBRE, slightly worse on UMich but the difference is within noise levels),
and because solutions based on logistic loss are generally considered more stable
and preferable for variable selection (Hastie, Tibshirani and Wainwright (2015)).
In Figure 8, we plot cross-validated classification accuracy of these methods as
a function of the number of variables selected. For the COBRE data, as we have
observed before, good accuracy can be achieved with a fairly small number of
edges, and the noisier UMich data requires more edges. In all cases, our method
uses fewer nodes than the others, as it is designed to do so.

Ultimately, assessing significance of the selected variables is necessary, which
is in general a difficult task in high-dimensional settings and an active area of
research (see, e.g., Lee et al. (2016), Lockhart et al. (2014), Meinshausen and
Bühlmann (2010), van de Geer et al. (2014)). In brain connectomics, it is par-
ticularly challenging to identify significant variables because of small sample
sizes (Button et al. (2013)). Here we employ stability selection (Meinshausen and
Bühlmann (2010)) which can be shown to control a type of false discovery rate by
employing many rounds of random data splitting and calculating the probability
of each variable being selected. Some versions of this method have been theo-
retically studied, and upper bounds on the expected number of variables with a
low selection probability that are included in the final solution (i.e., errors) have
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TABLE 2
Edges with the top 15 largest selection probabilities from stability selection. The first column shows
the pair of nodes making the edge, the second column the brain systems the nodes belong to in the

Power parcellation, and the third column the fitted coefficient of the edge

COBRE UMich

Edge Systems Coefficient Edge Systems Coefficient

1 (208, 85) (9, −1) −0.187 (110, 207) (5, 9) −0.013
2 (260, 11) (12, −1) 0.183 (255, 113) (1, 5) 0.014
3 (194, 140) (8, −1) 0.136 (33, 218) (1, 9) 0.016
4 (52, 186) (3, 8) −0.1 (46, 225) (2, 10) 0.013
5 (160, 239) (7, 11) −0.082 (43, 90) (2, 5) −0.013
6 (120, 116) (5, 5) 0.099 (23, 225) (1, 10) 0.012
7 (57, 129) (3, 5) −0.128 (66, 118) (4, 5) −0.013
8 (24, 114) (1, 5) −0.148 (26, 145) (1, 7) 0.013
9 (81, 179) (5, 8) −0.129 (186, 254) (8, −1) 0.012

10 (193, 140) (8, −1) 0.153 (15, 134) (1, 6) 0.011
11 (178, 234) (8, 10) 0.146 (76, 207) (5, 9) −0.012
12 (18, 194) (1, 8) 0.116 (65, 84) (4, −1) −0.012
13 (215, 207) (9, 9) −0.076 (26, 122) (1, 5) 0.012
14 (90, 224) (5, 10) 0.123 (33, 145) (1, 7) 0.012
15 (112, 253) (5, −1) 0.136 (36, 224) (1, 10) 0.011

been derived under mild conditions (Meinshausen and Bühlmann (2010), Shah and
Samworth (2013)). We implemented the version of stability selection proposed by
Shah and Samworth (2013), with values of λ and ρ obtained by cross-validation
on the COBRE data, and by the “one standard error rule” on the UMich dataset,
since stability selection is most relevant to sparse solutions. However, one of the
advantages of stability selection is that it is not sensitive to the initial choice of tun-
ing parameters, and changing tuning parameters only slightly alters the ordering
of variables with the largest selection probabilities.

The edges with the 15 largest selection probabilities are reported in Table 2.
Using the results of Shah and Samworth (2013) (equation 8), we estimated that
the expected number of falsely selected variables (variables with a probability of
selection smaller than the estimated) is bounded by 6.1 for the COBRE dataset
and 9.7 for the UMich data, which also suggests that results on the UMich data
might be less reliable. While the two datasets yield somewhat different patterns of
edge selection, it is notable that the default mode network (5) was often selected in
both. This network has been consistently implicated in schizophrenia (Ongür et al.
(2010), Peeters et al. (2015), Whitfield-Gabrieli et al. (2009)), as well as other psy-
chiatric disorders, possibly as a general marker of psychopathology (Broyd et al.
(2009), Menon (2011)). In the COBRE dataset, edges were also selected from the
fronto-parietal task control region (8), previously linked to schizophrenia (Bunney
and Bunney (2000), Fornito et al. (2012)). These results coincide with the findings
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TABLE 3
Classification accuracy (cross-validation average and
standard error) of the classifier fitted on one dataset

and evaluated on the other. The intercept (the mean) is
fitted on the test data and the accuracy is estimated

using 10-fold cross-validation on the test data

Test data

Training data COBRE UMich

COBRE 92.7 (2.6) 73.5 (3.4)
UMich 78.3 (3.0) 85.9 (3.6)

of Watanabe et al. (2014) on a different parcellation of the same data, which is an
encouraging indication of robustness to the exact choice of node locations. Some
of the variables with the highest estimated selection probabilities appear in the un-
certain system (−1), in particular in the cell connecting it with salience system (9),
which suggests that alternative parcellations that better characterize these regions
may offer a better account of the schizophrenia-related changes. Additionally, sen-
sory/somatomotor hand region (1) and salience system (9) also stand out in the
UMich data, and these are networks that have also been implicated in schizophre-
nia (Dong et al. (2017)).

While results in Table 2 do not fully coincide on the two datasets, there are
clear commonalities. Table 3 compares classification accuracy when the classifier
is trained on one dataset and tested on the other (with the exception of the intercept,
since the datasets are not centered in the same way, which is fitted on a part of the
test data, and the test error is then computed via 10-fold cross-validation). While
the accuracy is lower than when the same dataset is used for training and testing,
as one would expect, it is still reasonably good and in fact better than some of
the benchmark methods even when they train and test on the same data. We again
observe that the COBRE dataset is easier to classify.

Figure 9 shows the active nodes in the COBRE dataset (marked in green), cor-
responding to the endpoints of the edges listed in Table 2. We also identified a
set of 25 nodes that are not selected in any of the sparse solutions with cross-
validation accuracy within one standard error from the best solution (marked in
purple). These consistently inactive nodes are mostly clustered in two anatomi-
cally coherent regions.

7. Discussion. We have presented a method for classifying graphs with la-
beled nodes, motivated by brain connectomics but generally applicable to any set-
ting with such graphs. The distinct feature of our method is that it is graph-aware,
aiming to select a sparse set of both edges and nodes, but it is general in the sense
that it does not rely on the spatial structure of the brain. The method is compu-
tationally efficient since the regularization we use is convex, and the solution is
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FIG. 9. Nodes shown in green are endpoints of edges selected by stability selection shown in Ta-
ble 2. Nodes shown in purple are nodes not selected by any of the sparse solutions within one standard
error of the most accurate solution.

implemented with efficient optimization algorithms. These properties guarantee
fast convergence to the solution, making the methods scalable to networks with
thousands of nodes, which is enough to deal with many of the brain atlases usually
employed in neuroimaging (see, e.g., Kiar et al. (2018)). Statistically, the rate of
convergence depends on the number of active nodes only, not the total number of
nodes, which allows for accurate results with even moderate sample sizes if the
active node set is small.

The results we obtained on the schizophrenia data are generally in agreement
with previous studies. In particular, the default mode network has been consistently
implicated in schizophrenia and many other psychiatric disorders (Broyd et al.
(2009), Ongür et al. (2010)). While different subnetworks were implicated by the
two different datasets, we are still able to predict the disease status fairly accurately
by training on one dataset and testing on the other. The differences between the two
datasets may reflect real differences in samples collected at different sites and in
different experiments, as significant pathophysiological heterogeneity occurs for
all psychiatric diagnoses, or they may simply reflect type 2 errors.

Our methods work very generally with a sample of networks with labeled nodes
and associated responses. The many preprocessing steps inevitable when dealing
with fMRI data always add some uncertainty, and preprocessing decisions can
potentially affect downstream conclusions. We aimed to somewhat mitigate this by
using ranks, which are more robust and showed a slightly better performance on
our datasets. Another option, when practical, is to compare multiple preprocessing
pipelines, and/or multiple measures of connectivity, to further validate results. Our
method’s independence of these particular choices and its computational efficiency
make it an attractive option for such comparisons.

SUPPLEMENTARY MATERIAL

Supplement A: Algorithms, proofs, and data aquisition and preprocessing
details (DOI: 10.1214/19-AOAS1252SUPPA; .pdf). In this supplementary mate-

https://doi.org/10.1214/19-AOAS1252SUPPA
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rial, we provide the details of the optimization algorithms, proof of the theoretical
results and a detailed description of the data aquisition and preprocessing.

Supplement B: Code and data (DOI: 10.1214/19-AOAS1252SUPPB; .zip).
The .zip file contains source code of an R package that implements the methods
described in this paper, as well as the post-processed connectomes used in the
analysis.
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